Рабочая программа по физике на 2023-2024 учебный год

Класс: 10

Количество часов в неделю: 2; за год: 68

Педагог: Ямнеева О.Л.

Учебник: Физика. Базовый уровень. 10 класс: учебник/ Г.Я. Мякишев., Б.Б. Буховцев, Н.Н.

Сотский - М.: Дрофа, 2023 г.

2023 год

Рабочая программа по учебному предмету «Физика» для 10 класса базового уровня составлена в соответствии с Федеральным законом от 29 декабря 2012 г. №273-ФЗ «Об образовании в Российской Федерации» в соответствии с требованиями к результатам освоения образования основной образовательной программы среднего общего Π OO) СОО), представленных в Федеральном государственном образовательном стандарте (ФГОС) среднего общего образования (Приказа Минпросвещения России от 31.05.2021 г № 287, зарегистрирован Министерством юстиции Российской Федерации 05.07.2021 г., рег. Номер — 64101(далее — ФГОС ООО), Приказа Министерства просвещения РФ от 22 марта 2021 г. № 215 «Об утверждении порядка организации и осуществления образовательной деятельности по основным общеобразовательным программам — образовательным программа начального общего, основного общего образования» (с изменениями и дополнениями)), Приказа Министерства просвещения РФ от 22 марта 2021 г. N 115 "Об утверждении Порядка организации осуществления образовательной деятельности основным ПО общеобразовательным программам - образовательным программам начального общего, основного общего и среднего общего образования" (с изменениями и дополнениями), Приказа Министерства образования и науки РФ от 17 мая 2012 г. № 413 «Об утверждении федерального государственного образовательного стандарта общего образования»" (с изменениями и дополнениями), Приказа Министерства просвещения Российской федерации от 12 августа 2022 года № 732 "О внесении изменений в федеральный государственный образовательный стандарт среднего общего образования, утверждённый приказом Министерства образования и науки Российской Федерации от 17 мая 2012 года № 413", а также с учётом федеральной рабочей программы воспитания и концепции преподавания учебного предмета «Физика» образовательных организациях Российской Федерации, реализующих основные образовательные программы.

Рабочая программа составлена на основе примерной программы среднего общего образования по физике, авторской программы «Физика. Базовый уровень.10-11 классы» М.А. Петрова, И. Г. Куликова (Рабочая программа к линии УМК Г.Я. Мякишева, М.А. Петровой. Физика. Базовый уровень. 10-11 классы /сост. М.А. Петрова, И. Г. Куликова. М.:Дрофа, 2019). УМК Мякишева Г.Я.

Цели и задачи изучения курса физики

Изучение физики в 10-11 классах направлено на достижение следующих целей:

- освоение знаний о фундаментальных физических законах и принципах, лежащих в основе современной физической картины мира; наиболее важных открытиях в области физики, оказавших определяющее влияние на развитие техники и технологии; методах научного познания природы;
- овладение умениями проводить наблюдения, планировать и выполнять эксперименты, выдвигать гипотезы и строить модели, применять полученные знания по физике для объяснения разнообразных физических явлений и свойств веществ; практического использования физических знаний;
- развитие познавательных интересов, интеллектуальных и творческих способностей в процессе приобретения знаний и умений по физике с использованием различных

источников информации, в том числе средств современных информационных технологий; формирование умений оценивать достоверность естественнонаучной информации;

- воспитание убежденности в возможности познания законов природы; использования достижений физики на благо развития человеческой цивилизации; необходимости сотрудничества в процессе совместного выполнения задач, уважительного отношения к мнению оппонента при обсуждении проблем естественнонаучного содержания; готовности к морально-этической оценке использования научных достижений, чувства ответственности за защиту окружающей среды;
- использование приобретенных знаний и умений для решения практических задач повседневной жизни, обеспечения безопасности собственной жизни.

Достижение этих целей обеспечивается решением следующих задач:

- формирования основ научного мировоззрения;
- развития интеллектуальных способностей учащихся;
- развитие познавательных интересов школьников в процессе изучения физики;
- знакомство с методами научного познания окружающего мира;
- постановка проблем, требующих от учащихся самостоятельной деятельности по их разрешению;
- вооружение школьника научным методом познания, позволяющим получать объективные знания об окружающем мире.

Характеристика учебного предмета

Изучение физики в школе составляет неотъемлемую часть среднего образования. Место курса физики в школьном образовании определяется значением науки в жизни современного общества, ее решающим влиянием на развитие всех естественнонаучных дисциплинам и на темпы научно - технического прогресса. Обучение физике должно служить в первую очередь целям развития, образования и воспитания полноценной личности, обеспечивая функциональную грамотность всех обучающихся, способность ориентироваться в окружающем мире, подготовить их к активной и безопасной жизни в обществе, сформировать и поддерживать познавательный интерес.

Изучение физической теории можно представить в виде развивающей спирали, состоящей из трех витков, каждый из которых отражает цикл познания. Каждый цикл заканчивается определенным уровнем.

Первый цикл предполагает изучение теории в самом общем плане: определяется предмет изучения, накапливаются знания об основах теории. В этом цикле теория рассматривается как объект познания.

Во втором цикле происходит формирование теоретических обобщений при решении физических задач.

Третий цикл отражает роль теории в практической жизни, позволяет показать действие законов в процессе развития общества.

Во втором и третьем циклах теория выступает как инструмент познания.

Важнейшая задача обучения физике в школе – формировать личность, способную ориентироваться в потоке информации в условиях непрерывного образования.

Место учебного курса в учебном плане

Согласно учебному плану для изучения физики на базовом уровне среднего общего образования отводится 136 часа: в X и XI классе - по 68 учебных часов (из расчета 2 учебных часа в неделю).

Основные разделы

Физика и методы научного познания.

Механика.

Кинематика.

Динамика.

Законы сохранения в механике

Статика. Законы гидро и аэростатики

Молекулярная физика и термодинамика

Основы молекулярно-кинетической теории

Основы термодинамики

Электростатика

Планируемые результаты

В рабочей программе прописаны планируемые результаты освоения программы.

Периодичность и формы текущего контроля и промежуточной аттестации: текущий и итоговый. Проводится в форме контрольных работ, рассчитанных на 40 минут, тестов и самостоятельных работ на 15-20 минут с дифференцированным оцениванием. Текущий контроль проводится с целью проверки усвоения изучаемого и проверяемого программного материала; содержание определяется учителем с учетом степени сложности изучаемого материала, а также особенностей обучающихся класса.

Итоговые контрольные работы проводятся:

- после изучения наиболее значимых тем программы;
- в конце учебного полугодия.

Оценка письменных самостоятельных и контрольных работ

Оценка «5» ставится за работу, выполненную без ошибок и недочетов или имеющую не более одного недочета.

Оценка «4» ставится за работу, выполненную полностью, но при наличии в ней:

- а) не более одной негрубой ошибки и одного недочета,
- б) или не более двух недочетов.

Оценка «3» ставится в том случае, если ученик правильно выполнил не менее половины работы или допустил:

- а) не более двух грубых ошибок,
- б) или не более одной грубой ошибки и одного недочета,
- в) или не более двух-трех негрубых ошибок,
- г) или одной негрубой ошибки и трех недочетов,
- д) или при отсутствии ошибок, но при наличии 4-5 недочетов.

Оценка «2» ставится, когда число ошибок и недочетов превосходит норму, при которой может быть выставлена оценка «3», или если правильно выполнено менее половины работы.

Учитель имеет право поставить ученику оценку выше той, которая предусмотрена «нормами», если учеником оригинально выполнена работа.

Оценка устных ответов

Оценка «5» ставится в том случае, если учащийся:

- а) обнаруживает полное понимание физической сущности рассматриваемых явлений и закономерностей, знание законов и теорий, умеет подтвердить их конкретными примерами, применить в новой ситуации и при выполнении практических заданий;
- б) дает точное определение и истолкование основных понятий, законов, теорий, а также правильное определение физических величин, их единиц и способов измерения;
- в) технически грамотно выполняет физические опыты, чертежи, схемы, графики, сопутствующие ответу, правильно записывает формулы, пользуясь принятой системой условных обозначений;
- г) при ответе не повторяет дословно текст учебника, а умеет отобрать главное, обнаруживает самостоятельность и аргументированность суждений, умеет установить связь между изучаемым и ранее изученным материалом по курсу физики, а также с материалом, усвоенным при изучении других смежных предметов;
- д) умеет подкрепить ответ несложными демонстрационными опытами;
- е) умеет делать анализ, обобщения и собственные выводы по данному вопросу;
- ж) умеет самостоятельно и рационально работать с учебником, дополнительной литературой и справочниками.

Оценка «4» ставится в том случае, если ответ удовлетворяет названным выше требованиям, но учащийся:

- а) допускает одну негрубую ошибку или не более двух недочетов и может их исправить самостоятельно, или при небольшой помощи учителя;
- б) не обладает достаточными навыками работы со справочной литературой (например, ученик умеет все найти, правильно ориентируется в справочниках, но работает медленно).

Оценка «3» ставится в том случае, если учащийся правильно понимает физическую сущность рассматриваемых явлений и закономерностей, но при ответе:

- а) обнаруживает отдельные пробелы в усвоении существенных вопросов курса физики, не препятствующие дальнейшему усвоению программного материала;
- б) испытывает затруднения в применении знаний, необходимых для решения задач различных типов, при объяснении конкретных физических явлений на основе теории и законов, или в подтверждении конкретных примеров практического применения теории,
- в) отвечает неполно на вопросы учителя (упуская и основное), или воспроизводит содержание текста учебника, но недостаточно понимает отдельные положения, имеющие важное значение в этом тексте,

г) обнаруживает недостаточное понимание отдельных положений при воспроизведении текста учебника, или отвечает неполно на вопросы учителя, допуская одну — две грубые ошибки.

Оценка «2» ставится в том случае, если ученик:

- а) не знает и не понимает значительную или основную часть программного материала в пределах поставленных вопросов,
- б) или имеет слабо сформулированные и неполные знания и не умеет применять их к решению конкретных вопросов и задач по образцу и к проведению опытов,
- в) или при ответе допускает более двух грубых ошибок, которые не может исправить даже при помощи учителя.

Оценка лабораторных и практических работ

Оценка «5» ставится в том случае, если учащийся:

- а) выполнил работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений;
- б) самостоятельно и рационально выбрал и подготовил для опыта все необходимое оборудование, все опыты провел в условиях и режимах, обеспечивающих получение результатов и выводов с наибольшей точностью;
- в) в представленном отчете правильно и аккуратно выполнил все записи, таблицы, рисунки, чертежи, графики, вычисления и сделал выводы;
- г) правильно выполнил анализ погрешностей;
- д) соблюдал требования безопасности труда.

Оценка «4» ставится в том случае, если выполнены требования к оценке 5, но:

- а) опыт проводился в условиях, не обеспечивающих достаточной точности измерений;
- б) или было допущено два-три недочета, или не более одной негрубой ошибки и одного недочета.

Оценка «З» ставится, если работа выполнена не полностью, но объем выполненной части таков, что можно сделать выводы, или если в ходе проведения опыта и измерений были допущены следующие ошибки:

- а) опыт проводился в нерациональных условиях, что привело к получению результатов с большей погрешностью,
- б) или в отчете были допущены в общей сложности не более двух ошибок (в записях единиц, измерениях, в вычислениях, графиках, таблицах, схемах, анализе погрешностей и т.д.), не принципиального для данной работы характера, не повлиявших на результат выполнения,
- в) или не выполнен совсем или выполнен неверно анализ погрешностей,
- г) или работа выполнена не полностью, однако объем выполненной части таков, что позволяет получить правильные результаты и выводы по основным, принципиально важным задачам работы.

Оценка «2» ставится в том случае, если:

- а) работа выполнена не полностью, и объем выполненной части работы не позволяет сделать правильные выводы,
- б) или опыты, измерения, вычисления, наблюдения производились неправильно,

Многие самостоятельные и контрольные работы имеют разный уровень сложности: первый вариант включает задания базового уровня сложности, во второй могут быть включены задания повышенного уровня сложности, в третий – высокого уровня сложности. Правильное выполнение каждого из заданий базового уровня сложности оценивается 1

баллом; по усмотрению учителя правильное выполнение отдельных заданий повышенного или высокого уровня сложности может быть оценено 2–3 баллами.

Анализ отражения в рабочей программе рабочей программы воспитания

Воспитательный потенциал учебного предмета «Физика» на уровне среднего общего образования реализуется на деятельностной основе через:

- привлечение внимания обучающихся к ценностному аспекту изучаемых на уроках явлений, организацию работы с получаемой на уроке информацией физического содержания, включая информацию о современных достижениях физики; анализ и критическое оценивание информации;
- применение на уроке интерактивных форм работы с обучающимися: интеллектуальных игр, стимулирующих познавательную мотивацию обучающихся; дидактического театра, где полученные на уроке знания обыгрываются в театральных постановках; групповой работы или работы в парах, которые учат обучающихся командной работе и взаимодействию с другими обучающимися;
- инициирование и поддержку исследовательской деятельности обучающихся в рамках реализации ими индивидуальных и групповых исследовательских проектов, что дает обучающимся возможность приобрести навык самостоятельного решения проблемы, развивает умения наблюдать природные явления, выполнять опыты и экспериментальные исследования с использованием измерительных приборов, формирует навык генерирования и оформления собственных идей, навык публичного выступления перед аудиторией, аргументирования и отстаивания своей точки зрения;
- знакомство со сферами профессиональной деятельности, связанными с физикой, и современными технологиями, основанными на достижениях физической науки, что способствует развитию представлений о возможных сферах будущей профессиональной деятельности, связанной с физикой, подготовка к дальнейшему обучению в этом направлении и осознанному выбору обучающимися будущей профессии;
- установление доверительных отношения между учителем и учениками, способствующих позитивному восприятию учащимися требований и просьб учителя, активизации их познавательной деятельности и активности;
- побуждение обучающихся к соблюдению на уроке общепринятых норм поведения, правил общения со старшими (учителями) и сверстниками (школьниками);
- использование воспитательных возможностей содержания учебного предмета через демонстрацию обучающимся примеров ответственного, гражданского поведения, проявления человеколюбия и добросердечности.

Содержание учебного предмета

Введение «Физика и методы научного познания» (1ч.)

Физика и объекты ее изучения. Методы научного исследования в физике. Измерение физических величин.

Раздел 1. «Механика» (34 ч.).

Тема 1. «Кинематика» (11 ч).

Различные способы описания механического движения. Прямолинейное движение.

Перемещение. Радиус-вектор. Равномерное прямолинейное движение. Скорость, координата и пройденный путь при равномерном прямолинейном движении. Кинематическое уравнение равномерного движения.

Движение тела на плоскости. Средняя скорость при неравномерном прямолинейном движении. Мгновенная скорость. Движение тела с постоянным ускорением. Кинематическое уравнение равноускоренного прямолинейного движения.

Свободное падение тел. Относительность механического движения. Закон сложения скоростей.

Кинематика движения по окружности.

Лабораторная работа № 1 «Исследование равноускоренного прямолинейного движения» (с использованием оборудования цифровой лаборатории «Точки роста»).

Лабораторная работа № 2 «Изучение движения тела брошенного горизонтально» (с использованием оборудования цифровой лаборатории «Точки роста»).

Тема 2. «Динамика» (11 ч.).

Модель материальной точки. Закон (принцип) инерции. Первый закон Ньютона. Инерциальные системы отсчета. Сила.

Принцип суперпозиции сил. Инертность. Масса. Второй закон Ньютона. Третий закон Ньютона. Принцип относительности Галилея. Основная (прямая) и обратная задачи механики. Сила всемирного тяготения. Закон всемирного тяготения. Сила тяжести. Движение искусственных спутников Земли.

Первая и вторая космические скорости. Перегрузки. Невесомость. Сила упругости. Закон Гука. Вес тела. Сила трения.

Лабораторная работа № 3 «Изучение движения тела по окружности под действием сил упругости и тяжести» (с использованием оборудования цифровой лаборатории «Точки роста»).

Лабораторная работа № 4 «Исследование изменения веса тела при его движении с ускорением» (с использованием оборудования цифровой лаборатории «Точки роста»).

Лабораторная работа № 5 «Изучение коэффициента трения скольжения» (с использованием оборудования цифровой лаборатории «Точки роста»).

Тема 3. «Законы сохранения» (8ч.).

Импульс материальной точки. Другая формулировка второго закона Ньютона. Импульс системы тел. Закон сохранения импульса. Реактивное движение. Центр масс. Работа силы. Графический смысл работы. Мощность. КПД механизма. Механическая энергия. Кинетическая энергия. Теорема об изменении кинетической энергии. Потенциальная энергия. Закон сохранения механической энергии. Изменение механической энергии под действием внешних сил.

Тема 4. «Статика. Законы гидро - и аэростатики» (4 ч.).

Равновесие материальной точки. Условия равновесия твердых тел. Центр тяжести твердого тела. Виды равновесия твердых тел. Давление в жидкостях и газах. Закон Паскаля. Закон Архимеда. Условие плавания тел.

Раздел 2. «Молекулярная физика и термодинамика» (21 ч.)

Тема 5. «Основы молекулярно-кинетической теории» (10 ч.)

Основные положения молекулярно-кинетической теории и их опытные обоснования. Общие характеристики молекул. Температура. Измерение температуры. Тепловое (термодинамическое) равновесие. Макроскопические параметры термодинамической системы.

Свойства газов. Модель идеального газа. Газовые законы. Абсолютная шкала температур. Уравнение состояния идеального газа. Основное уравнение МКТ. Температура и средняя кинетическая энергия хаотического движения молекул. Внутренняя энергия идеального газа. Измерение скоростей молекул газа. Строение и свойства твердых тел. Аморфные тела. *Лабораторная работа №6 «Изучение изотермического процесса»* (с использованием оборудования цифровой лаборатории «Точки роста»).

Лабораторная работа №7 «Изучение уравнения состояния идеального газа» (с использованием оборудования цифровой лаборатории «Точки роста»).

Тема 6. «Основы термодинамики» (6 ч.).

Работа газа в термодинамике. Количество теплоты. Уравнение теплового баланса. Первый закон термодинамики. Применение первого закона термодинамики к изопроцессам. Адиабатический процесс. Необратимость тепловых машин. Второй закон термодинамики. Тепловые машины. Принцип действия теплового двигателя. Цикл Карно. Идеальная холодильная машина. Экологические проблемы использования тепловых машин.

Тема 7. «Изменения агрегатных состояний вещества» (5 ч.).

Испарение и конденсация. Насыщенный пар. Кипение жидкости. Влажность воздуха. Измерение влажности воздуха.

Плавление и кристаллизация вещества

Лабораторная работа № 8 «Измерение относительной влажности воздуха» (с использованием оборудования цифровой лаборатории «Точки роста»).

Лабораторная работа № 9 «Измерение температуры кристаллизации и удельной температуры плавления вещества» (с использованием оборудования цифровой лаборатории «Точки роста»).

Раздел 3. «Электродинамика» (11 ч.)

Тема 8. «Электростатика» (11 ч.)

Электрический заряд. Электризация тел. Электроскоп. Электрометр. Закон сохранения электрического заряда. Модель точечного заряда. Закон Кулона. Электрическое поле. Теории близкодействия и дальнодействия. Напряженность электрического поля. Принцип суперпозиции электрических полей. Напряженность точечного заряда. Графическое изображение электрических полей.

Работа кулоновских сил. Потенциал электростатического поля и разность потенциалов. Эквипотенциальные поверхности. Проводники в электростатическом поле. Диэлектрики в электростатическом поле.

Диэлектрическая проницаемость. Электрическая емкость. Конденсаторы. Энергия электрического поля.

Лабораторная работа № 10 «Измерение электрической емкости конденсатора» (с использованием оборудования цифровой лаборатории «Точки роста»).

Повторение (1 ч)

Планируемые результаты освоения учебного предмета

Личностные

Личностные результаты в сфере отношений обучающихся к себе, к своему здоровью, к познанию себя:

- ориентация обучающихся на достижение личного счастья, реализацию позитивных жизненных перспектив, инициативность, креативность, готовность и способность к личностному самоопределению, способность ставить цели и строить жизненные планы;
- готовность и способность обеспечить себе и своим близким достойную жизнь в процессе самостоятельной, творческой и ответственной деятельности;
- готовность и способность обучающихся к отстаиванию личного достоинства, собственного мнения, готовность и способность вырабатывать собственную позицию по отношению к общественно-политическим событиям прошлого и настоящего на основе осознания и осмысления истории, духовных ценностей и достижений нашей страны;
- готовность и способность обучающихся к саморазвитию и самовоспитанию в соответствии с общечеловеческими ценностями и идеалами гражданского общества, потребность в физическом самосовершенствовании, занятиях спортивнооздоровительной деятельностью;
- принятие и реализация ценностей здорового и безопасного образа жизни, бережное, ответственное и компетентное отношение к собственному физическому и психологическому здоровью;
 - неприятие вредных привычек: курения, употребления алкоголя, наркотиков.

Личностные результаты в сфере отношений обучающихся к России как к Родине (Отечеству):

- российская идентичность, способность к осознанию российской идентичности в поликультурном социуме, чувство причастности к историко-культурной общности российского народа и судьбе России, патриотизм, готовность к служению Отечеству, его защите;
- уважение к своему народу, чувство ответственности перед Родиной, гордости за свой край, свою Родину, прошлое и настоящее многонационального народа России, уважение к государственным символам (герб, флаг, гимн);

— формирование уважения к русскому языку как государственному языку Российской Федерации, являющемуся основой российской идентичности и главным фактором национального самоопределения; — воспитание уважения к культуре, языкам, традициям и обычаям народов, проживающих в Российской Федерации.

Личностные результаты в сфере отношений обучающихся к закону, государству и к гражданскому обществу:

- гражданственность, гражданская позиция активного и ответственного члена российского общества, осознающего свои конституционные права и обязанности, уважающего закон и правопорядок. Готовность отстаивать собственные права свободы человека и гражданина согласно общепризнанным принципам нормам международного права и в соответствии с Конституцией Российской Федерации, правовая и политическая грамотность;
- мировоззрение, соответствующее современному уровню развития науки и общественной практики, основанное на диалоге культур, а также различных форм общественного сознания, осознание своего места в поликультурном мире;
- готовность обучающихся к конструктивному участию в принятии решений, затрагивающих их права и интересы, в том числе в различных формах общественной самоорганизации, самоуправления, общественно значимой деятельности;
- приверженность идеям интернационализма, дружбы, равенства, взаимопомощи народов; воспитание уважительного отношения к национальному достоинству людей, их чувствам, религиозным убеждениям;
 - готовность обучающихся противостоять идеологии экстремизма, национализма, ксенофобии; коррупции; дискриминации по социальным, религиозным, расовым, национальным признакам и другим негативным социальным явлениям.

Личностные результаты в сфере отношений обучающихся с окружающими людьми:

- нравственное сознание и поведение на основе усвоения общечеловеческих ценностей, толерантного сознания и поведения в поликультурном мире, готовности и способности вести диалог с другими людьми, достигать в нем взаимопонимания, находить общие цели и сотрудничать для их достижения;
- принятие гуманистических ценностей, осознанное, уважительное и доброжелательное отношение к другому человеку, его мнению, мировоззрению;
- способность к сопереживанию и формирование позитивного отношения к людям, в том числе к лицам с ограниченными возможностями здоровья и инвалидам; бережное, ответственное и компетентное отношение к физическому и психологическому здоровью других людей, умение оказывать первую помощь;
- формирование выраженной в поведении нравственной позиции, в том числе способности к сознательному выбору добра, нравственного сознания и поведения на основе усвоения общечеловеческих ценностей и нравственных чувств (чести, долга, справедливости, милосердия и дружелюбия);

— развитие компетенций сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности.

Личностные результаты в сфере отношений обучающихся к окружающему миру, живой природе, художественной культуре:

- мировоззрение, соответствующее современному уровню развития науки, значимости науки, готовность к научнотехническому творчеству, владение достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки, заинтересованность в научных знаниях об устройстве мира и общества;
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- экологическая культура, бережное отношения к родной земле, природным богатствам России и мира; понимание влияния социально-экономических процессов на состояние природной и социальной среды, ответственность за состояние природных ресурсов; умения и навыки разумного природопользования, нетерпимое отношение к действиям, приносящим вред экологии; приобретение опыта эколого-направленной деятельности;
- эстетическое отношения к миру, готовность к эстетическому обустройству собственного быта.

Личностные результаты в сфере отношений обучающихся к семье и родителям, в том числе подготовка к семейной жизни:

- ответственное отношение к созданию семьи на основе осознанного принятия ценностей семейной жизни;
- положительный образ семьи, родительства (отцовства и материнства), семейных ценностей.

Личностные результаты в сфере отношения обучающихся к труду, в сфере социальноэкономических отношений:

- уважение ко всем формам собственности, готовность к защите своей собственности,
- осознанный выбор будущей профессии как путь и способ реализации собственных жизненных планов;
- готовность обучающихся к трудовой профессиональной деятельности как к возможности участия в решении личных, общественных, государственных, общенациональных проблем; потребность трудиться, уважение к труду людям труда, трудовым достижениям, творческое отношение к разным видам трудовой деятельности;
- готовность к самообслуживанию, включая обучение и выполнение домашних обязанностей.

Личностные результаты в сфере физического, психологического, социального и академического благополучия обучающихся:

— физическое, эмоционально-психологическое, социальное благополучие обучающихся в жизни образовательной организации, ощущение детьми безопасности и психологического комфорта, информационной безопасности.

Метапредметные результаты

Метапредметные результаты освоения основной образовательной программы представлены тремя группами универсальных учебных действий (УУД).

1. Регулятивные универсальные учебные действия Выпускник научится:

- самостоятельно определять цели, задавать параметры и критерии, по которым можно определить, что цель достигнута;
- оценивать возможные последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей, основываясь на соображениях этики и морали;
- ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной цели;
- выбирать путь достижения цели, планировать решение поставленных задач, оптимизируя материальные и нематериальные затраты;
- организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели;
 сопоставлять полученный результат деятельности с поставленной заранее целью.

2. Познавательные универсальные учебные действия Выпускник научится:

- искать и находить обобщенные способы решения задач, в том числе, осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;
- критически оценивать и интерпретировать информацию с разных позиций, распознавать и фиксировать противоречия в информационных источниках;
- использовать различные модельно-схематические средства для представления существенных связей и отношений, а также противоречий, выявленных в информационных источниках;
- находить и приводить критические аргументы в отношении действий и суждений другого; спокойно и разумно относиться к критическим замечаниям в отношении собственного суждения, рассматривать их как ресурс собственного развития;
- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможностей для широкого переноса средств и способов действия;

- выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;
 - менять и удерживать разные позиции в познавательной деятельности.

3. Коммуникативные универсальные учебные действия Выпускник научится:

- осуществлять деловую коммуникацию как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее пределами), подбирать партнеров для деловой коммуникации исходя из соображений результативности взаимодействия, а не личных симпатий;
- при осуществлении групповой работы быть как руководителем, так и членом команды в разных ролях (генератор идей, критик, исполнитель, выступающий, эксперт и т.д.);
 - координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;
- развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;

распознавать конфликтогенные ситуации предотвращать конфликты, образовательную коммуникацию, избегая личностных оценочных суждений.

Предметные результаты

Выпускник на базовом уровне научится:

- демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современных техники и технологий, в практической деятельности людей;
- показывать на примерах взаимосвязь между физикой и другими естественными науками;
- устанавливать взаимосвязь естественно-научных явлений и применять основные физические модели для их описания и объяснения;
- использовать информацию физического содержания при решении учебных, практических, проектных и исследовательских задач, интегрируя информацию из различных источников и критически ее оценивая;
- различать и уметь использовать в учебно-исследовательской деятельности методы научного исследования (наблюдение, описание, измерение, эксперимент, выдвижение гипотезы, моделирование и т. д.) и формы научного познания (факты, законы, теории), демонстрируя на примерах их роль и место в научном познании;
- проводить прямые и косвенные измерения физических величин, выбирая измерительные приборы с учетом необходимой точности измерений, планировать ход

измерений, получать значение измеряемой величины и оценивать относительную погрешность измерения по формулам;

- выполнять исследования зависимостей между физическими величинами: проводить измерения и определять на основе исследования значение параметров, характеризующих данную зависимость между величинами, и делать вывод с учетом погрешности измерений;
- использовать для описания характера протекания физических процессов физические величины и демонстрировать взаимосвязь между ними;
- использовать для описания характера протекания физических процессов физические законы с учетом границ их применимости;
- решать качественные задачи (в том числе и межпредметного характера), используя модели, физические величины и законы; выстраивать логически верную цепочку объяснения (доказательства) предложенного в задаче процесса (явления);
- решать расчетные задачи с явно заданной физической моделью. На основе анализа условия задачи выделять физическую модель, находить физические величины и законы, необходимые и достаточные для ее решения, проводить расчеты и проверять полученный результат;
- учитывать границы применения изученных физических моделей при решении физических и межпредметных задач;
- применять знания о принципах работы и основных характеристиках изученных машин, приборов и других технических устройств для решения практических, учебноисследовательских и проектных задач;
- использовать знания о физических объектах и процессах в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде, для принятия решений в повседневной жизни.

Выпускник на базовом уровне получит возможность научиться:

- понимать и объяснять целостность физической теории, различать границы ее применимости и место в ряду других физических теорий;
- владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;
- характеризовать системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;

- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;
- самостоятельно планировать и проводить физические эксперименты;
- характеризовать глобальные проблемы, стоящие перед человечеством: энергетические, сырьевые, экологические и роль физики в решении этих проблем;
- решать практико-ориентированные качественные и расчетные физические задачи с выбором физической модели, используя несколько физических законов или формул, связывающих известные физические величины;
- объяснять принципы работы и характеристики изученных машин, приборов и технических устройств;
- объяснять условия применения физических моделей при решении физических задач, находить адекватную предложенной задаче физическую модель, разрешать проблему, как на основе имеющихся знаний, так и при помощи методов оценки.

Организация проектной и учебно-исследовательской деятельности учащихся

В рамках урочной деятельности учебное время, которое может быть специально выделено на осуществление полноценной исследовательской или проектной работы в классе, оптимальным использование ограничено. ЭТИХ условиях является исследовательских и проектных заданий на этапе выполнения домашнего задания. Проектное задание рассматривается как вариант краткосрочной (к следующему уроку) или долгосрочной (на продолжительный период, например, на 1 месяц) домашней работы. Домашнее задание может как индивидуальным, так и групповым. Задание может дифференцированным и/или опережающим, если это позволяет подготовленность класса или отдельных обучающихся. Учащимся может быть представлен выбор при выполнении домашнего задания. Важно не то, что все должны выполнить одно и то же задание; важно достижение поставленной учебной задачи, формирование положительного отношения к её выполнению, поддержание интереса, развитие поисковых умений. Все предложенные проектные задания имеет чёткую структуру, поэтому очень хорошо подходят для выработки алгоритма выполнения домашнего задания в таком формате. Проектное задание, итогом разработки которого может быть некий «продукт» (текст, схема, словарь, альбом и др.), созданный детьми. Обучающиеся используют материалы любого проектного задания в качестве полноценной разработки (проектной или исследовательской) и с этим «продуктом» участвуют в школьных научно-исследовательских мероприятиях.

Система оценки достижения планируемых результатов освоения курса физики обучающимися 10 класса.

Система оценки включает процедуры внутренней и внешней оценки.

Внутренняя оценка включает:

— стартовую диагностику,

- текущую и тематическую оценку,
- портфолио,
- внутри-школьный мониторинг образовательных достижений,
- промежуточную и итоговую аттестацию обучающихся.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ 10 КЛАСС

		Количество ч	асов	Электронные			
№ п/п	№ п/п Наименование разделов и тем программы Вс		Контрольные работы	Практические работы	(цифровые) образовательные ресурсы		
Раздел 1.	ФИЗИКА И МЕТОДЫ НАУЧНОГО ПО	ЗНАНИЯ					
1.1	Физика и методы научного познания	2			Библиотека ЦОК https://m.edsoo.ru/7f41bf72		
Итого по разделу		2					
Раздел 2.	МЕХАНИКА						
2.1	Кинематика	5			Библиотека ЦОК https://m.edsoo.ru/7f41bf72		
2.2	Динамика	7			Библиотека ЦОК https://m.edsoo.ru/7f41bf72		
2.3	Законы сохранения в механике	6	1	1	Библиотека ЦОК https://m.edsoo.ru/7f41bf72		
Итого по	разделу	18					
Раздел 3.	Раздел 3. МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА						
3.1	Основы молекулярно-кинетической теории	9		1	Библиотека ЦОК https://m.edsoo.ru/7f41bf72		

3.2	Основы термодинамики	10	1		Библиотека ЦОК https://m.edsoo.ru/7f41bf72	
3.3	Агрегатные состояния вещества. Фазовые переходы	5			Библиотека ЦОК https://m.edsoo.ru/7f41bf72	
Итого по разделу		24				
Раздел 4	Раздел 4. ЭЛЕКТРОДИНАМИКА					
4.1	Электростатика	10		1	Библиотека ЦОК https://m.edsoo.ru/7f41bf72	
4.2	Постоянный электрический ток. Токи в различных средах	12	1		Библиотека ЦОК https://m.edsoo.ru/7f41bf72	
Итого по	р разделу	22				
Резервн	ое время	2				
ОБЩЕЕ	КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ	68	3	3		

ПОУРОЧНОЕ ПЛАНИРОВАНИЕ 10 КЛАСС

		Количе	ство часов			Электронные цифровые
№ п/п	Тема урока	Всего	Контрольные работы	Практические работы	Дата изучения	образовательные ресурсы
1	Физика — наука о природе. Научные методы познания окружающего мира	1				Библиотека ЦОК https://m.edsoo.ru/ff0c32e2
2	Роль и место физики в формировании современной научной картины мира, в практической деятельности людей	1				Библиотека ЦОК https://m.edsoo.ru/ff0c33e6
3	Механическое движение. Относительность механического движения. Перемещение, скорость, ускорение	1				Библиотека ЦОК https://m.edsoo.ru/ff0c3508
4	Равномерное прямолинейное движение	1				Библиотека ЦОК https://m.edsoo.ru/ff0c3620

5	Равноускоренное прямолинейное движение	1	Библиотека ЦОК https://m.edsoo.ru/ff0c372e
6	Свободное падение. Ускорение свободного падения	1	Библиотека ЦОК https://m.edsoo.ru/ff0c39cc
7	Криволинейное движение. Движение материальной точки по окружности	1	Библиотека ЦОК https://m.edsoo.ru/ff0c3ada
8	Принцип относительности Галилея. Инерциальные системы отсчета. Первый закон Ньютона	1	Библиотека ЦОК https://m.edsoo.ru/ff0c3be8
9	Масса тела. Сила. Принцип суперпозиции сил. Второй закон Ньютона для материальной точки	1	Библиотека ЦОК https://m.edsoo.ru/ff0c3be8
10	Третий закон Ньютона для материальных точек	1	Библиотека ЦОК https://m.edsoo.ru/ff0c3be8
11	Закон всемирного тяготения. Сила тяжести. Первая космическая скорость	1	Библиотека ЦОК https://m.edsoo.ru/ff0c3d00
12	Сила упругости. Закон Гука. Вес тела	1	Библиотека ЦОК https://m.edsoo.ru/ff0c3e18
13	Сила трения. Коэффициент трения. Сила сопротивления при движении тела в жидкости или газе	1	Библиотека ЦОК https://m.edsoo.ru/ff0c3f76

14	Поступательное и вращательное движение абсолютно твердого тела. Момент силы. Плечо силы. Условия равновесия твердого тела	1	Библиотека ЦОК https://m.edsoo.ru/ff0c41a6
15	Импульс материальной точки, системы материальных точек. Импульс силы. Закон сохранения импульса. Реактивное движение	1	Библиотека ЦОК https://m.edsoo.ru/ff0c43d6
16	Работа и мощность силы. Кинетическая энергия материальной точки. Теорема об изменении кинетической энергии	1	Библиотека ЦОК https://m.edsoo.ru/ff0c4502
17	Потенциальная энергия. Потенциальная энергия упруго деформированной пружины. Потенциальная энергия тела вблизи поверхности Земли	1	Библиотека ЦОК https://m.edsoo.ru/ff0c461a
18	Потенциальные и непотенциальные силы. Связь работы непотенциальных сил с изменением механической энергии системы тел. Закон сохранения механической энергии	1	Библиотека ЦОК https://m.edsoo.ru/ff0c478c

19	Лабораторная работа «Исследование связи работы силы с изменением механической энергии тела на примере растяжения резинового жгута»	1		1	
20	Контрольная работа по теме «Кинематика. Динамика. Законы сохранения в механике»	1	1		Библиотека ЦОК https://m.edsoo.ru/ff0c4b74
21	Основные положения молекулярнокинетической теории. Броуновское движение. Диффузия	1			Библиотека ЦОК https://m.edsoo.ru/ff0c4dc2
22	Характер движения и взаимодействия частиц вещества. Модели строения газов, жидкостей и твёрдых тел	1			
23	Масса молекул. Количество вещества. Постоянная Авогадро	1			
24	Тепловое равновесие. Температура и её измерение. Шкала температур Цельсия	1			
25	Идеальный газ в МКТ. Основное уравнение МКТ	1			Библиотека ЦОК https://m.edsoo.ru/ff0c4fde

26	Абсолютная температура как мера средней кинетической энергии движения молекул. Уравнение Менделеева-Клапейрона	1		Библиотека ЦОК https://m.edsoo.ru/ff0c511e
27	Закон Дальтона. Газовые законы	1		
28	Лабораторная работа «Исследование зависимости между параметрами состояния разреженного газа»	1	1	
29	Изопроцессы в идеальном газе и их графическое представление	1		Библиотека ЦОК https://m.edsoo.ru/ff0c570e
30	Внутренняя энергия термодинамической системы и способы её изменения. Количество теплоты и работа. Внутренняя энергия одноатомного идеального газа	1		Библиотека ЦОК https://m.edsoo.ru/ff0c5952
31	Виды теплопередачи	1		Библиотека ЦОК https://m.edsoo.ru/ff0c5c36
32	Удельная теплоёмкость вещества. Количество теплоты при теплопередаче. Адиабатный процесс	1		Библиотека ЦОК https://m.edsoo.ru/ff0c5c36

33	Первый закон термодинамики и его применение к изопроцессам	1		Библиотека ЦОК https://m.edsoo.ru/ff0c5efc
34	Необратимость процессов в природе. Второй закон термодинамики	1		Библиотека ЦОК https://m.edsoo.ru/ff0c6230
35	Принцип действия и КПД тепловой машины	1		Библиотека ЦОК https://m.edsoo.ru/ff0c600a
36	Цикл Карно и его КПД	1		
37	Экологические проблемы теплоэнергетики	1		
38	Обобщающий урок «Молекулярная физика. Основы термодинамики»	1		Библиотека ЦОК https://m.edsoo.ru/ff0c6938
39	Контрольная работа по теме «Молекулярная физика. Основы термодинамики»	1	1	Библиотека ЦОК https://m.edsoo.ru/ff0c6a50
40	Парообразование и конденсация. Испарение и кипение	1		Библиотека ЦОК https://m.edsoo.ru/ff0c63b6
41	Абсолютная и относительная влажность воздуха. Насыщенный пар	1		Библиотека ЦОК https://m.edsoo.ru/ff0c64d8
42	Твердое тело. Кристаллические и аморфные тела. Анизотропия свойств кристаллов. Жидкие	1		Библиотека ЦОК https://m.edsoo.ru/ff0c65f0

	кристаллы. Современные материалы		
43	Плавление и кристаллизация. Удельная теплота плавления. Сублимация	1	Библиотека ЦОК https://m.edsoo.ru/ff0c6708
44	Уравнение теплового баланса	1	Библиотека ЦОК https://m.edsoo.ru/ff0c6820
45	Электризация тел. Электрический заряд. Два вида электрических зарядов	1	Библиотека ЦОК https://m.edsoo.ru/ff0c6bcc
46	Проводники, диэлектрики и полупроводники. Закон сохранения электрического заряда	1	Библиотека ЦОК https://m.edsoo.ru/ff0c6bcc
47	Взаимодействие зарядов. Закон Кулона. Точечный электрический заряд	1	Библиотека ЦОК https://m.edsoo.ru/ff0c6ce4
48	Напряжённость электрического поля. Принцип суперпозиции электрических полей. Линии напряжённости	1	Библиотека ЦОК https://m.edsoo.ru/ff0c6df2
49	Работа сил электростатического поля. Потенциал. Разность потенциалов	1	Библиотека ЦОК https://m.edsoo.ru/ff0c6f00
50	Проводники и диэлектрики в электростатическом поле.	1	Библиотека ЦОК https://m.edsoo.ru/ff0c7018

	Диэлектрическая проницаемость			
51	Электроёмкость. Конденсатор	1		Библиотека ЦОК https://m.edsoo.ru/ff0c7126
52	Электроёмкость плоского конденсатора. Энергия заряженного конденсатора	1		Библиотека ЦОК https://m.edsoo.ru/ff0c72c0
53	Лабораторная работа "Измерение электроёмкости конденсатора"	1	1	
54	Принцип действия и применение конденсаторов, копировального аппарата, струйного принтера. Электростатическая защита. Заземление электроприборов	1		
55	Электрический ток, условия его существования. Постоянный ток. Сила тока. Напряжение. Сопротивление. Закон Ома для участка цепи	1		
56	Последовательное, параллельное, смешанное соединение проводников. Лабораторная работа «Изучение смешанного соединения	1		Библиотека ЦОК https://m.edsoo.ru/ff0c74f0

	резисторов»		
57	Работа и мощность электрического тока. Закон Джоуля-Ленца	1	Библиотека ЦОК https://m.edsoo.ru/ff0c7838
58	Закон Ома для полной (замкнутой) электрической цепи. Короткое замыкание. Лабораторная работа «Измерение ЭДС источника тока и его внутреннего сопротивления»	1	Библиотека ЦОК https://m.edsoo.ru/ff0c7ae0
59	Электронная проводимость твердых металлов. Зависимость сопротивления металлов от температуры. Сверхпроводимость	1	
60	Электрический ток в вакууме. Свойства электронных пучков	1	
61	Полупроводники, их собственная и примесная проводимость. Свойства р—пперехода. Полупроводниковые приборы	1	Библиотека ЦОК https://m.edsoo.ru/ff0c84ae
62	Электрический ток в растворах и расплавах электролитов. Электролитическая диссоциация. Электролиз	1	Библиотека ЦОК https://m.edsoo.ru/ff0c82ba

63	Электрический ток в газах. Самостоятельный и несамостоятельный разряд. Молния. Плазма	1		Библиотека ЦОК https://m.edsoo.ru/ff0c84ae
64	Электрические приборы и устройства и их практическое применение. Правила техники безопасности	1		Библиотека ЦОК https://m.edsoo.ru/ff0c86fc
65	Обобщающий урок «Электродинамика»	1		Библиотека ЦОК https://m.edsoo.ru/ff0c88be
66	Контрольная работа по теме «Электростатика. Постоянный электрический ток. Токи в различных средах»	1	1	Библиотека ЦОК https://m.edsoo.ru/ff0c8a8a
67	Резервный урок. Контрольная работа по теме "Электродинамика"	1		Библиотека ЦОК https://m.edsoo.ru/ff0c8c56
68	Резервный урок. Обобщающий урок по темам 10 класса	1		Библиотека ЦОК https://m.edsoo.ru/ff0c8f6c
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ	68	3	3	